REFERENCES

  1. Maguire, G. (2014) Systems Biology Approach To Developing “Systems Therapeutics.” American Chemical Society Medicinal Chemistry Letters, 5 (5), pp 453–455.
  2. Gage FH, Coates PW, Palmer TD, Kuhn HG, Fisher LJ, Suhonen JO, Peterson DA, Suhr ST, Ray J (1995) Survival and differentiation of adult neuronal progenitor cells transplanted to the adult brain. Proc Natl Acad Sci USA 92:11879–11883.
  3. Juhyun Oh, Yang David Lee & Amy J Wagers (2014) Stem cell aging: mechanisms, regulators and therapeutic opportunities. Nature Medicine 20, 870–880
  4. Maguire, G (2014) Maturing From Embryonic To Adult Policy On Stem Cell Therapeutics. American Chemical Society Medicinal Chemistry Letter. http://pubs.acs.org/doi/ipdf/10.1021/ml500396z
  5. Maguire, G. (2013) Stem cell therapy without the cells. Comm. & Integrative Biol. V 6. 6. 10.4161/cib.26631.
  6. Maguire, G. et al (2013) Stem Cell Released Molecules and Exosomes in Tissue Engineering. Procedia Engineering Volume 59, 2013, Pages 270–278 http://www.sciencedirect.com/science/article/pii/S1877705813010357
  7. Maguire, G. and Friedman, P. (2015) Systems biology approach to developing S2RM®-based “systems therapeutics” and naturally induced pluripotent stem cells. World J Stem Cells May 26; 7(4): 745-756
  8. Maguire G and Friedman P (2020) The safety of a therapeutic product composed of a combination of stem cell released molecules from adipose mesenchymal stem cells and fibroblasts. Future Sci OA. 2020 May 29;6(7):FSO592. 
  9. Chee C, et al., (2016) The relative contribution of intramyocellular lipid to whole body fat oxidation is reduced with age, but subsarcolemmal lipid accumulation and insulin resistance are only associated with overweight individuals. Diabetes 10.2337/db15-1383.
  10. Maguire, G. (2016) Exosomes: smart nanospheres for drug delivery naturally produced by stem cells. In: Fabrication and Self Assembly of Nanobiomaterials. DOI: http://dx.doi.org/10.1016/B978-0-323-41533-0.00007-6, Elsevier, In Press.
  11. Bielefeld K. A., Amini-Nik S., Alman B. A. (2013). Cutaneous wound healing: recruiting developmental pathways for regeneration. Cell Mol. Life Sci. 70, 2059–2081.10.1007/s00018-012-1152-9
  12. Gurtner G. C., Werner S., Barrandon Y., Longaker M. T. (2008). Wound repair and regeneration.Nature 453, 314–321.10.1038/nature07039
  13. Liu S., Jiang L., Li H., et al (2014) Mesenchymal stem cells prevent hypertrophic scar formation via inflammatory regulation when undergoing apoptosis. Journal of Investigative Dermatology.2014;134(10):2648–2657. doi: 10.1038/jid.2014.169
  14. Grether-Beck S et al (2012) Urea uptake enhances barrier function and antimicrobial defense in humans by regulating epidermal gene expression. J Invest Dermatol. 2012 Jun; 132(6): 1561–1572.
  15. Qin H, Zheng X, Zhong X, Shetty AK, Elias PM, Bollag WB. (2011) Aquaporin-3 in keratinocytes and skin: its role and interaction with phospholipase D2. Arch Biochem Biophys. 15;508(2):138-43. doi: 10.1016/j.abb.2011.01.014.
  16. Neuman MG, Nanau RM, Oruña-Sanchez L, Coto G. (2015) Hyaluronic acid and wound healing. J Pharm Pharm Sci. 2015;18(1):53-60.
  17. Chattopadhyay S and Raines RT (2014) Review collagen-based biomaterials for wound healing. 101: 821–833
  18. Blanpain C, Lowry WE, Geoghegan A, Polak L, Fuchs E. Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. 2004;118:635–48.
  19. Fest E et al (2011) Adipocyte lineage cells contribute to the skin stem cell niche to drive hair cycling. Cell 146: 761-771.